q-Classical polynomials and the q-Askey and Nikiforov–Uvarov tableaus
نویسندگان
چکیده
منابع مشابه
The Askey - Wilson Polynomials and q - Sturm - Liouville Problems
We nd the adjoint of the Askey-Wilson divided di erence operator with respect to the inner product on L 2 ( 1; 1; (1 x 2 ) 1=2 dx) de ned as a Cauchy principal value and show that the Askey-Wilson polynomials are solutions of a q-Sturm-Liouville problem. From these facts we deduce various properties of the polynomials in a simple and straightforward way. We also provide an operator theoretic de...
متن کاملQ-Hermite Polynomials and Classical Orthogonal Polynomials
We use generating functions to express orthogonality relations in the form of q-beta integrals. The integrand of such a q-beta integral is then used as a weight function for a new set of orthogonal or biorthogonal functions. This method is applied to the continuous q-Hermite polynomials, the Al-Salam-Carlitz polynomials, and the polynomials of Szegő and leads naturally to the Al-Salam-Chihara p...
متن کاملNonsymmetric Askey-Wilson polynomials and Q-polynomial distance-regular graphs
In his famous theorem (1982), Douglas Leonard characterized the q-Racah polynomials and their relatives in the Askey scheme from the duality property of Q-polynomial distance-regular graphs. In this paper we consider a nonsymmetric (or Laurent) version of the q-Racah polynomials in the above situation. Let Γ denote a Q-polynomial distance-regular graph that contains a Delsarte clique C. Assume ...
متن کاملThe First and Second Zagreb Indices, First and Second Zagreb Polynomials of HAC5C6C7[p,q] and HAC5C7[p,q] Nanotubes
Topological indices are numerical parameters of a molecular graph G which characterize its topology. On the other hands, computing the connectivity indices of molecular graphs is an important branch in chemical graph theory. Therefore, we compute First Zagreb index Zg <span style="font-family: TimesNewRomanPS-Italic...
متن کاملq-DIFFERENTIAL EQUATIONS FOR q-CLASSICAL POLYNOMIALS AND q-JACOBI-STIRLING NUMBERS
The q-classical polynomials are orthogonal polynomial sequences that are eigenfunctions of a second order q-differential operator of a certain type. We explicitly construct q-differential equations of arbitrary even order fulfilled by these polynomials, while giving explicit expressions for the integer composite powers of the aforementioned second order q-differential operator. The latter is ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2001
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(00)00585-9